patch-2.4.20 linux-2.4.20/arch/parisc/kernel/semaphore.c
Next file: linux-2.4.20/arch/parisc/kernel/setup.c
Previous file: linux-2.4.20/arch/parisc/kernel/sba_iommu.c
Back to the patch index
Back to the overall index
- Lines: 204
- Date:
Thu Nov 28 15:53:10 2002
- Orig file:
linux-2.4.19/arch/parisc/kernel/semaphore.c
- Orig date:
Tue Apr 17 17:19:25 2001
diff -urN linux-2.4.19/arch/parisc/kernel/semaphore.c linux-2.4.20/arch/parisc/kernel/semaphore.c
@@ -1,131 +1,100 @@
/*
- * Just taken from alpha implementation.
- * This can't work well, perhaps.
- */
-/*
- * Generic semaphore code. Buyer beware. Do your own
- * specific changes in <asm/semaphore-helper.h>
+ * Semaphore implementation Copyright (c) 2001 Matthew Wilcox, Hewlett-Packard
*/
#include <linux/sched.h>
-#include <asm/semaphore-helper.h>
+#include <linux/spinlock.h>
/*
- * Semaphores are implemented using a two-way counter:
- * The "count" variable is decremented for each process
- * that tries to sleep, while the "waking" variable is
- * incremented when the "up()" code goes to wake up waiting
- * processes.
- *
- * Notably, the inline "up()" and "down()" functions can
- * efficiently test if they need to do any extra work (up
- * needs to do something only if count was negative before
- * the increment operation.
- *
- * waking_non_zero() (from asm/semaphore.h) must execute
- * atomically.
- *
- * When __up() is called, the count was negative before
- * incrementing it, and we need to wake up somebody.
- *
- * This routine adds one to the count of processes that need to
- * wake up and exit. ALL waiting processes actually wake up but
- * only the one that gets to the "waking" field first will gate
- * through and acquire the semaphore. The others will go back
- * to sleep.
- *
- * Note that these functions are only called when there is
- * contention on the lock, and as such all this is the
- * "non-critical" part of the whole semaphore business. The
- * critical part is the inline stuff in <asm/semaphore.h>
- * where we want to avoid any extra jumps and calls.
+ * Semaphores are complex as we wish to avoid using two variables.
+ * `count' has multiple roles, depending on its value. If it is positive
+ * or zero, there are no waiters. The functions here will never be
+ * called; see <asm/semaphore.h>
+ *
+ * When count is -1 it indicates there is at least one task waiting
+ * for the semaphore.
+ *
+ * When count is less than that, there are '- count - 1' wakeups
+ * pending. ie if it has value -3, there are 2 wakeups pending.
+ *
+ * Note that these functions are only called when there is contention
+ * on the lock, and as such all this is the "non-critical" part of the
+ * whole semaphore business. The critical part is the inline stuff in
+ * <asm/semaphore.h> where we want to avoid any extra jumps and calls.
*/
void __up(struct semaphore *sem)
{
- wake_one_more(sem);
+ sem->count--;
wake_up(&sem->wait);
}
-/*
- * Perform the "down" function. Return zero for semaphore acquired,
- * return negative for signalled out of the function.
- *
- * If called from __down, the return is ignored and the wait loop is
- * not interruptible. This means that a task waiting on a semaphore
- * using "down()" cannot be killed until someone does an "up()" on
- * the semaphore.
- *
- * If called from __down_interruptible, the return value gets checked
- * upon return. If the return value is negative then the task continues
- * with the negative value in the return register (it can be tested by
- * the caller).
- *
- * Either form may be used in conjunction with "up()".
- *
- */
-
+#define wakers(count) (-1 - count)
-#define DOWN_HEAD(task_state) \
+#define DOWN_HEAD \
+ int ret = 0; \
+ DECLARE_WAITQUEUE(wait, current); \
\
+ /* Note that someone is waiting */ \
+ if (sem->count == 0) \
+ sem->count = -1; \
\
- current->state = (task_state); \
- add_wait_queue(&sem->wait, &wait); \
- \
- /* \
- * Ok, we're set up. sem->count is known to be less than zero \
- * so we must wait. \
- * \
- * We can let go the lock for purposes of waiting. \
- * We re-acquire it after awaking so as to protect \
- * all semaphore operations. \
- * \
- * If "up()" is called before we call waking_non_zero() then \
- * we will catch it right away. If it is called later then \
- * we will have to go through a wakeup cycle to catch it. \
- * \
- * Multiple waiters contend for the semaphore lock to see \
- * who gets to gate through and who has to wait some more. \
- */ \
- for (;;) {
-
-#define DOWN_TAIL(task_state) \
- current->state = (task_state); \
- } \
- current->state = TASK_RUNNING; \
- remove_wait_queue(&sem->wait, &wait);
+ /* protected by the sentry still -- use unlocked version */ \
+ wait.flags = WQ_FLAG_EXCLUSIVE; \
+ __add_wait_queue_tail(&sem->wait, &wait); \
+ lost_race: \
+ spin_unlock_irq(&sem->sentry); \
+
+#define DOWN_TAIL \
+ spin_lock_irq(&sem->sentry); \
+ if (wakers(sem->count) == 0 && ret == 0) \
+ goto lost_race; /* Someone stole our wakeup */ \
+ __remove_wait_queue(&sem->wait, &wait); \
+ current->state = TASK_RUNNING; \
+ if (!waitqueue_active(&sem->wait) && (sem->count < 0)) \
+ sem->count = wakers(sem->count);
+
+#define UPDATE_COUNT \
+ sem->count += (sem->count < 0) ? 1 : - 1;
+
void __down(struct semaphore * sem)
{
- DECLARE_WAITQUEUE(wait, current);
+ DOWN_HEAD
+
+ for(;;) {
+ set_task_state(current, TASK_UNINTERRUPTIBLE);
+ /* we can _read_ this without the sentry */
+ if (sem->count != -1)
+ break;
+ schedule();
+ }
- DOWN_HEAD(TASK_UNINTERRUPTIBLE)
- if (waking_non_zero(sem))
- break;
- schedule();
- DOWN_TAIL(TASK_UNINTERRUPTIBLE)
+ DOWN_TAIL
+ UPDATE_COUNT
}
int __down_interruptible(struct semaphore * sem)
{
- DECLARE_WAITQUEUE(wait, current);
- int ret = 0;
+ DOWN_HEAD
- DOWN_HEAD(TASK_INTERRUPTIBLE)
+ for(;;) {
+ set_task_state(current, TASK_INTERRUPTIBLE);
+ /* we can _read_ this without the sentry */
+ if (sem->count != -1)
+ break;
+
+ if (signal_pending(current)) {
+ ret = -EINTR;
+ break;
+ }
+ schedule();
+ }
- ret = waking_non_zero_interruptible(sem, current);
- if (ret)
- {
- if (ret == 1)
- /* ret != 0 only if we get interrupted -arca */
- ret = 0;
- break;
+ DOWN_TAIL
+
+ if (!ret) {
+ UPDATE_COUNT
}
- schedule();
- DOWN_TAIL(TASK_INTERRUPTIBLE)
- return ret;
-}
-int __down_trylock(struct semaphore * sem)
-{
- return waking_non_zero_trylock(sem);
+ return ret;
}
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)