patch-2.3.16 linux/arch/sparc64/kernel/pci_sabre.c
Next file: linux/arch/sparc64/kernel/power.c
Previous file: linux/arch/sparc64/kernel/pci_psycho.c
Back to the patch index
Back to the overall index
- Lines: 1493
- Date:
Tue Aug 31 11:23:30 1999
- Orig file:
v2.3.15/linux/arch/sparc64/kernel/pci_sabre.c
- Orig date:
Wed Dec 31 16:00:00 1969
diff -u --recursive --new-file v2.3.15/linux/arch/sparc64/kernel/pci_sabre.c linux/arch/sparc64/kernel/pci_sabre.c
@@ -0,0 +1,1492 @@
+/* $Id: pci_sabre.c,v 1.1 1999/08/30 10:00:32 davem Exp $
+ * pci_sabre.c: Sabre specific PCI controller support.
+ *
+ * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
+ * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
+ * Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz)
+ */
+
+#include <linux/kernel.h>
+#include <linux/types.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/malloc.h>
+
+#include <asm/apb.h>
+#include <asm/pbm.h>
+#include <asm/iommu.h>
+#include <asm/irq.h>
+
+#include "pci_impl.h"
+
+/* All SABRE registers are 64-bits. The following accessor
+ * routines are how they are accessed. The REG parameter
+ * is a physical address.
+ */
+#define sabre_read(__reg) \
+({ u64 __ret; \
+ __asm__ __volatile__("ldxa [%1] %2, %0" \
+ : "=r" (__ret) \
+ : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
+ : "memory"); \
+ __ret; \
+})
+#define sabre_write(__reg, __val) \
+ __asm__ __volatile__("stxa %0, [%1] %2" \
+ : /* no outputs */ \
+ : "r" (__val), "r" (__reg), \
+ "i" (ASI_PHYS_BYPASS_EC_E))
+
+/* SABRE PCI controller register offsets and definitions. */
+#define SABRE_UE_AFSR 0x0030UL
+#define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
+#define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
+#define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
+#define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
+#define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
+#define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
+#define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
+#define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
+#define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
+#define SABRE_UECE_AFAR 0x0038UL
+#define SABRE_CE_AFSR 0x0040UL
+#define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
+#define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
+#define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
+#define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
+#define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
+#define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
+#define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
+#define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
+#define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
+#define SABRE_IOMMU_CONTROL 0x0200UL
+#define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
+#define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
+#define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
+#define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
+#define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
+#define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
+#define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
+#define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
+#define SABRE_IOMMU_TSBBASE 0x0208UL
+#define SABRE_IOMMU_FLUSH 0x0210UL
+#define SABRE_IMAP_A_SLOT0 0x0c00UL
+#define SABRE_IMAP_B_SLOT0 0x0c20UL
+#define SABRE_IMAP_SCSI 0x1000UL
+#define SABRE_IMAP_ETH 0x1008UL
+#define SABRE_IMAP_BPP 0x1010UL
+#define SABRE_IMAP_AU_REC 0x1018UL
+#define SABRE_IMAP_AU_PLAY 0x1020UL
+#define SABRE_IMAP_PFAIL 0x1028UL
+#define SABRE_IMAP_KMS 0x1030UL
+#define SABRE_IMAP_FLPY 0x1038UL
+#define SABRE_IMAP_SHW 0x1040UL
+#define SABRE_IMAP_KBD 0x1048UL
+#define SABRE_IMAP_MS 0x1050UL
+#define SABRE_IMAP_SER 0x1058UL
+#define SABRE_IMAP_UE 0x1070UL
+#define SABRE_IMAP_CE 0x1078UL
+#define SABRE_IMAP_PCIERR 0x1080UL
+#define SABRE_IMAP_GFX 0x1098UL
+#define SABRE_IMAP_EUPA 0x10a0UL
+#define SABRE_ICLR_A_SLOT0 0x1400UL
+#define SABRE_ICLR_B_SLOT0 0x1480UL
+#define SABRE_ICLR_SCSI 0x1800UL
+#define SABRE_ICLR_ETH 0x1808UL
+#define SABRE_ICLR_BPP 0x1810UL
+#define SABRE_ICLR_AU_REC 0x1818UL
+#define SABRE_ICLR_AU_PLAY 0x1820UL
+#define SABRE_ICLR_PFAIL 0x1828UL
+#define SABRE_ICLR_KMS 0x1830UL
+#define SABRE_ICLR_FLPY 0x1838UL
+#define SABRE_ICLR_SHW 0x1840UL
+#define SABRE_ICLR_KBD 0x1848UL
+#define SABRE_ICLR_MS 0x1850UL
+#define SABRE_ICLR_SER 0x1858UL
+#define SABRE_ICLR_UE 0x1870UL
+#define SABRE_ICLR_CE 0x1878UL
+#define SABRE_ICLR_PCIERR 0x1880UL
+#define SABRE_WRSYNC 0x1c20UL
+#define SABRE_PCICTRL 0x2000UL
+#define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
+#define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
+#define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
+#define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
+#define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
+#define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
+#define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
+#define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
+#define SABRE_PIOAFSR 0x2010UL
+#define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
+#define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
+#define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
+#define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
+#define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
+#define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
+#define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
+#define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
+#define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
+#define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
+#define SABRE_PIOAFAR 0x2018UL
+#define SABRE_PCIDIAG 0x2020UL
+#define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
+#define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
+#define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
+#define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
+#define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
+#define SABRE_PCITASR 0x2028UL
+#define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
+#define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
+#define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
+#define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
+#define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
+#define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
+#define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
+#define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
+#define SABRE_PIOBUF_DIAG 0x5000UL
+#define SABRE_DMABUF_DIAGLO 0x5100UL
+#define SABRE_DMABUF_DIAGHI 0x51c0UL
+#define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
+#define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
+#define SABRE_IOMMU_VADIAG 0xa400UL
+#define SABRE_IOMMU_TCDIAG 0xa408UL
+#define SABRE_IOMMU_TAG 0xa580UL
+#define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
+#define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
+#define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
+#define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
+#define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
+#define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
+#define SABRE_IOMMU_DATA 0xa600UL
+#define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
+#define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
+#define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
+#define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
+#define SABRE_PCI_IRQSTATE 0xa800UL
+#define SABRE_OBIO_IRQSTATE 0xa808UL
+#define SABRE_FFBCFG 0xf000UL
+#define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
+#define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
+#define SABRE_MCCTRL0 0xf010UL
+#define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
+#define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
+#define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
+#define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
+#define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
+#define SABRE_MCCTRL1 0xf018UL
+#define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
+#define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
+#define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
+#define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
+#define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
+#define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
+#define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
+#define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
+#define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
+#define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
+#define SABRE_RESETCTRL 0xf020UL
+
+#define SABRE_CONFIGSPACE 0x001000000UL
+#define SABRE_IOSPACE 0x002000000UL
+#define SABRE_IOSPACE_SIZE 0x00000ffffUL
+#define SABRE_MEMSPACE 0x100000000UL
+#define SABRE_MEMSPACE_SIZE 0x07fffffffUL
+
+/* UltraSparc-IIi Programmer's Manual, page 325, PCI
+ * configuration space address format:
+ *
+ * 32 24 23 16 15 11 10 8 7 2 1 0
+ * ---------------------------------------------------------
+ * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
+ * ---------------------------------------------------------
+ */
+#define SABRE_CONFIG_BASE(PBM) \
+ ((PBM)->parent->config_space | (1UL << 24))
+#define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
+ (((unsigned long)(BUS) << 16) | \
+ ((unsigned long)(DEVFN) << 8) | \
+ ((unsigned long)(REG)))
+
+static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
+ unsigned char bus,
+ unsigned int devfn,
+ int where)
+{
+ if (!pbm)
+ return NULL;
+ return (void *)
+ (SABRE_CONFIG_BASE(pbm) |
+ SABRE_CONFIG_ENCODE(bus, devfn, where));
+}
+
+static int sabre_out_of_range(unsigned char devfn)
+{
+ return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
+ ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
+ (PCI_SLOT(devfn) > 1));
+}
+
+static int __sabre_out_of_range(struct pci_pbm_info *pbm,
+ unsigned char bus,
+ unsigned char devfn)
+{
+ return ((pbm->parent == 0) ||
+ ((pbm == &pbm->parent->pbm_B) &&
+ (bus == pbm->pci_first_busno) &&
+ PCI_SLOT(devfn) > 8) ||
+ ((pbm == &pbm->parent->pbm_A) &&
+ (bus == pbm->pci_first_busno) &&
+ PCI_SLOT(devfn) > 8));
+}
+
+static int __sabre_read_byte(struct pci_dev *dev, int where, u8 *value)
+{
+ struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
+ unsigned char bus = dev->bus->number;
+ unsigned int devfn = dev->devfn;
+ u8 *addr;
+
+ *value = 0xff;
+ addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
+ if (!addr)
+ return PCIBIOS_SUCCESSFUL;
+
+ if (__sabre_out_of_range(pbm, bus, devfn))
+ return PCIBIOS_SUCCESSFUL;
+ pci_config_read8(addr, value);
+ return PCIBIOS_SUCCESSFUL;
+}
+
+static int __sabre_read_word(struct pci_dev *dev, int where, u16 *value)
+{
+ struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
+ unsigned char bus = dev->bus->number;
+ unsigned int devfn = dev->devfn;
+ u16 *addr;
+
+ *value = 0xffff;
+ addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
+ if (!addr)
+ return PCIBIOS_SUCCESSFUL;
+
+ if (__sabre_out_of_range(pbm, bus, devfn))
+ return PCIBIOS_SUCCESSFUL;
+
+ if (where & 0x01) {
+ printk("pcibios_read_config_word: misaligned reg [%x]\n",
+ where);
+ return PCIBIOS_SUCCESSFUL;
+ }
+ pci_config_read16(addr, value);
+ return PCIBIOS_SUCCESSFUL;
+}
+
+static int __sabre_read_dword(struct pci_dev *dev, int where, u32 *value)
+{
+ struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
+ unsigned char bus = dev->bus->number;
+ unsigned int devfn = dev->devfn;
+ u32 *addr;
+
+ *value = 0xffffffff;
+ addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
+ if (!addr)
+ return PCIBIOS_SUCCESSFUL;
+
+ if (__sabre_out_of_range(pbm, bus, devfn))
+ return PCIBIOS_SUCCESSFUL;
+
+ if (where & 0x03) {
+ printk("pcibios_read_config_dword: misaligned reg [%x]\n",
+ where);
+ return PCIBIOS_SUCCESSFUL;
+ }
+ pci_config_read32(addr, value);
+ return PCIBIOS_SUCCESSFUL;
+}
+
+static int sabre_read_byte(struct pci_dev *dev, int where, u8 *value)
+{
+ if (dev->bus->number)
+ return __sabre_read_byte(dev, where, value);
+
+ if (sabre_out_of_range(dev->devfn)) {
+ *value = 0xff;
+ return PCIBIOS_SUCCESSFUL;
+ }
+
+ if (where < 8) {
+ u16 tmp;
+
+ __sabre_read_word(dev, where & ~1, &tmp);
+ if (where & 1)
+ *value = tmp >> 8;
+ else
+ *value = tmp & 0xff;
+ return PCIBIOS_SUCCESSFUL;
+ } else
+ return __sabre_read_byte(dev, where, value);
+}
+
+static int sabre_read_word(struct pci_dev *dev, int where, u16 *value)
+{
+ if (dev->bus->number)
+ return __sabre_read_word(dev, where, value);
+
+ if (sabre_out_of_range(dev->devfn)) {
+ *value = 0xffff;
+ return PCIBIOS_SUCCESSFUL;
+ }
+
+ if (where < 8)
+ return __sabre_read_word(dev, where, value);
+ else {
+ u8 tmp;
+
+ __sabre_read_byte(dev, where, &tmp);
+ *value = tmp;
+ __sabre_read_byte(dev, where + 1, &tmp);
+ *value |= tmp << 8;
+ return PCIBIOS_SUCCESSFUL;
+ }
+}
+
+static int sabre_read_dword(struct pci_dev *dev, int where, u32 *value)
+{
+ u16 tmp;
+
+ if (dev->bus->number)
+ return __sabre_read_dword(dev, where, value);
+
+ if (sabre_out_of_range(dev->devfn)) {
+ *value = 0xffffffff;
+ return PCIBIOS_SUCCESSFUL;
+ }
+
+ sabre_read_word(dev, where, &tmp);
+ *value = tmp;
+ sabre_read_word(dev, where + 2, &tmp);
+ *value |= tmp << 16;
+ return PCIBIOS_SUCCESSFUL;
+}
+
+static int __sabre_write_byte(struct pci_dev *dev, int where, u8 value)
+{
+ struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
+ unsigned char bus = dev->bus->number;
+ unsigned int devfn = dev->devfn;
+ u8 *addr;
+
+ addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
+ if (!addr)
+ return PCIBIOS_SUCCESSFUL;
+
+ if (__sabre_out_of_range(pbm, bus, devfn))
+ return PCIBIOS_SUCCESSFUL;
+ pci_config_write8(addr, value);
+ return PCIBIOS_SUCCESSFUL;
+}
+
+static int __sabre_write_word(struct pci_dev *dev, int where, u16 value)
+{
+ struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
+ unsigned char bus = dev->bus->number;
+ unsigned int devfn = dev->devfn;
+ u16 *addr;
+
+ addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
+ if (!addr)
+ return PCIBIOS_SUCCESSFUL;
+
+ if (__sabre_out_of_range(pbm, bus, devfn))
+ return PCIBIOS_SUCCESSFUL;
+
+ if (where & 0x01) {
+ printk("pcibios_write_config_word: misaligned reg [%x]\n",
+ where);
+ return PCIBIOS_SUCCESSFUL;
+ }
+ pci_config_write16(addr, value);
+ return PCIBIOS_SUCCESSFUL;
+}
+
+static int __sabre_write_dword(struct pci_dev *dev, int where, u32 value)
+{
+ struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
+ unsigned char bus = dev->bus->number;
+ unsigned int devfn = dev->devfn;
+ u32 *addr;
+
+ addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
+ if (!addr)
+ return PCIBIOS_SUCCESSFUL;
+
+ if (__sabre_out_of_range(pbm, bus, devfn))
+ return PCIBIOS_SUCCESSFUL;
+
+ if (where & 0x03) {
+ printk("pcibios_write_config_dword: misaligned reg [%x]\n",
+ where);
+ return PCIBIOS_SUCCESSFUL;
+ }
+ pci_config_write32(addr, value);
+ return PCIBIOS_SUCCESSFUL;
+}
+
+static int sabre_write_byte(struct pci_dev *dev, int where, u8 value)
+{
+ if (dev->bus->number)
+ return __sabre_write_byte(dev, where, value);
+
+ if (sabre_out_of_range(dev->devfn))
+ return PCIBIOS_SUCCESSFUL;
+
+ if (where < 8) {
+ u16 tmp;
+
+ __sabre_read_word(dev, where & ~1, &tmp);
+ if (where & 1) {
+ value &= 0x00ff;
+ value |= tmp << 8;
+ } else {
+ value &= 0xff00;
+ value |= tmp;
+ }
+ return __sabre_write_word(dev, where & ~1, tmp);
+ } else
+ return __sabre_write_byte(dev, where, value);
+}
+
+static int sabre_write_word(struct pci_dev *dev, int where, u16 value)
+{
+ if (dev->bus->number)
+ return __sabre_write_word(dev, where, value);
+
+ if (sabre_out_of_range(dev->devfn))
+ return PCIBIOS_SUCCESSFUL;
+
+ if (where < 8)
+ return __sabre_write_word(dev, where, value);
+ else {
+ __sabre_write_byte(dev, where, value & 0xff);
+ __sabre_write_byte(dev, where + 1, value >> 8);
+ return PCIBIOS_SUCCESSFUL;
+ }
+}
+
+static int sabre_write_dword(struct pci_dev *dev, int where, u32 value)
+{
+ if (dev->bus->number)
+ return __sabre_write_dword(dev, where, value);
+
+ if (sabre_out_of_range(dev->devfn))
+ return PCIBIOS_SUCCESSFUL;
+
+ sabre_write_word(dev, where, value & 0xffff);
+ sabre_write_word(dev, where + 2, value >> 16);
+ return PCIBIOS_SUCCESSFUL;
+}
+
+static struct pci_ops sabre_ops = {
+ sabre_read_byte,
+ sabre_read_word,
+ sabre_read_dword,
+ sabre_write_byte,
+ sabre_write_word,
+ sabre_write_dword
+};
+
+static unsigned long sabre_pcislot_imap_offset(unsigned long ino)
+{
+ unsigned int bus = (ino & 0x10) >> 4;
+ unsigned int slot = (ino & 0x0c) >> 2;
+
+ if (bus == 0)
+ return SABRE_IMAP_A_SLOT0 + (slot * 8);
+ else
+ return SABRE_IMAP_B_SLOT0 + (slot * 8);
+}
+
+static unsigned long __onboard_imap_off[] = {
+/*0x20*/ SABRE_IMAP_SCSI,
+/*0x21*/ SABRE_IMAP_ETH,
+/*0x22*/ SABRE_IMAP_BPP,
+/*0x23*/ SABRE_IMAP_AU_REC,
+/*0x24*/ SABRE_IMAP_AU_PLAY,
+/*0x25*/ SABRE_IMAP_PFAIL,
+/*0x26*/ SABRE_IMAP_KMS,
+/*0x27*/ SABRE_IMAP_FLPY,
+/*0x28*/ SABRE_IMAP_SHW,
+/*0x29*/ SABRE_IMAP_KBD,
+/*0x2a*/ SABRE_IMAP_MS,
+/*0x2b*/ SABRE_IMAP_SER,
+/*0x2c*/ 0 /* reserved */,
+/*0x2d*/ 0 /* reserved */,
+/*0x2e*/ SABRE_IMAP_UE,
+/*0x2f*/ SABRE_IMAP_CE,
+/*0x30*/ SABRE_IMAP_PCIERR,
+};
+#define SABRE_ONBOARD_IRQ_BASE 0x20
+#define SABRE_ONBOARD_IRQ_LAST 0x30
+#define sabre_onboard_imap_offset(__ino) \
+ __onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
+
+#define sabre_iclr_offset(ino) \
+ ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \
+ (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
+
+/* PCI SABRE INO number to Sparc PIL level. */
+static unsigned char sabre_pil_table[] = {
+/*0x00*/0, 0, 0, 0, /* PCI A slot 0 Int A, B, C, D */
+/*0x04*/0, 0, 0, 0, /* PCI A slot 1 Int A, B, C, D */
+/*0x08*/0, 0, 0, 0, /* PCI A slot 2 Int A, B, C, D */
+/*0x0c*/0, 0, 0, 0, /* PCI A slot 3 Int A, B, C, D */
+/*0x10*/0, 0, 0, 0, /* PCI B slot 0 Int A, B, C, D */
+/*0x14*/0, 0, 0, 0, /* PCI B slot 1 Int A, B, C, D */
+/*0x18*/0, 0, 0, 0, /* PCI B slot 2 Int A, B, C, D */
+/*0x1c*/0, 0, 0, 0, /* PCI B slot 3 Int A, B, C, D */
+/*0x20*/3, /* SCSI */
+/*0x21*/5, /* Ethernet */
+/*0x22*/8, /* Parallel Port */
+/*0x23*/13, /* Audio Record */
+/*0x24*/14, /* Audio Playback */
+/*0x25*/15, /* PowerFail */
+/*0x26*/3, /* second SCSI */
+/*0x27*/11, /* Floppy */
+/*0x28*/2, /* Spare Hardware */
+/*0x29*/9, /* Keyboard */
+/*0x2a*/4, /* Mouse */
+/*0x2b*/12, /* Serial */
+/*0x2c*/10, /* Timer 0 */
+/*0x2d*/11, /* Timer 1 */
+/*0x2e*/15, /* Uncorrectable ECC */
+/*0x2f*/15, /* Correctable ECC */
+/*0x30*/15, /* PCI Bus A Error */
+/*0x31*/15, /* PCI Bus B Error */
+/*0x32*/1, /* Power Management */
+};
+
+static int __init sabre_ino_to_pil(struct pci_dev *pdev, unsigned int ino)
+{
+ int ret;
+
+ ret = sabre_pil_table[ino];
+ if (ret == 0 && pdev == NULL) {
+ ret = 1;
+ } else if (ret == 0) {
+ switch ((pdev->class >> 16) & 0x0f) {
+ case PCI_BASE_CLASS_STORAGE:
+ ret = 4;
+
+ case PCI_BASE_CLASS_NETWORK:
+ ret = 6;
+
+ case PCI_BASE_CLASS_DISPLAY:
+ ret = 9;
+
+ case PCI_BASE_CLASS_MULTIMEDIA:
+ case PCI_BASE_CLASS_MEMORY:
+ case PCI_BASE_CLASS_BRIDGE:
+ ret = 10;
+
+ default:
+ ret = 1;
+ };
+ }
+ return ret;
+}
+
+static unsigned int __init sabre_irq_build(struct pci_controller_info *p,
+ struct pci_dev *pdev,
+ unsigned int ino)
+{
+ struct ino_bucket *bucket;
+ volatile unsigned int *imap, *iclr;
+ unsigned long imap_off, iclr_off;
+ int pil, inofixup = 0;
+
+ ino &= PCI_IRQ_INO;
+ if (ino < SABRE_ONBOARD_IRQ_BASE) {
+ /* PCI slot */
+ imap_off = sabre_pcislot_imap_offset(ino);
+ } else {
+ /* onboard device */
+ if (ino > SABRE_ONBOARD_IRQ_LAST) {
+ prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino);
+ prom_halt();
+ }
+ imap_off = sabre_onboard_imap_offset(ino);
+ }
+
+ /* Now build the IRQ bucket. */
+ pil = sabre_ino_to_pil(pdev, ino);
+ imap = (volatile unsigned int *)__va(p->controller_regs + imap_off);
+ imap += 1;
+
+ iclr_off = sabre_iclr_offset(ino);
+ iclr = (volatile unsigned int *)__va(p->controller_regs + iclr_off);
+ iclr += 1;
+
+ if ((ino & 0x20) == 0)
+ inofixup = ino & 0x03;
+
+ bucket = __bucket(build_irq(pil, inofixup, iclr, imap));
+ bucket->flags |= IBF_PCI;
+
+ /* XXX We still need to code up support for this in irq.c
+ * XXX It's easy to code up since only one SIMBA can exist
+ * XXX in a machine and this is where the sync register is. -DaveM
+ */
+ if (pdev) {
+ struct pcidev_cookie *pcp = pdev->sysdata;
+ if (pdev->bus->number != pcp->pbm->pci_first_busno)
+ bucket->flags |= IBF_DMA_SYNC;
+ }
+ return __irq(bucket);
+}
+
+/* SABRE error handling support. */
+static void sabre_check_iommu_error(struct pci_controller_info *p,
+ unsigned long afsr,
+ unsigned long afar)
+{
+ unsigned long iommu_tag[16];
+ unsigned long iommu_data[16];
+ unsigned long flags;
+ u64 control;
+ int i;
+
+ spin_lock_irqsave(&p->iommu.lock, flags);
+ control = sabre_read(p->iommu.iommu_control);
+ if (control & SABRE_IOMMUCTRL_ERR) {
+ char *type_string;
+
+ /* Clear the error encountered bit.
+ * NOTE: On Sabre this is write 1 to clear,
+ * which is different from Psycho.
+ */
+ sabre_write(p->iommu.iommu_control, control);
+ switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
+ case 1:
+ type_string = "Invalid Error";
+ break;
+ case 3:
+ type_string = "ECC Error";
+ break;
+ default:
+ type_string = "Unknown";
+ break;
+ };
+ printk("SABRE%d: IOMMU Error, type[%s]\n",
+ p->index, type_string);
+
+ /* Enter diagnostic mode and probe for error'd
+ * entries in the IOTLB.
+ */
+ control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
+ sabre_write(p->iommu.iommu_control,
+ (control | SABRE_IOMMUCTRL_DENAB));
+ for (i = 0; i < 16; i++) {
+ unsigned long base = p->controller_regs;
+
+ iommu_tag[i] =
+ sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
+ iommu_data[i] =
+ sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
+ sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
+ sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
+ }
+ sabre_write(p->iommu.iommu_control, control);
+
+ for (i = 0; i < 16; i++) {
+ unsigned long tag, data;
+
+ tag = iommu_tag[i];
+ if (!(tag & SABRE_IOMMUTAG_ERR))
+ continue;
+
+ data = iommu_data[i];
+ switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
+ case 1:
+ type_string = "Invalid Error";
+ break;
+ case 3:
+ type_string = "ECC Error";
+ break;
+ default:
+ type_string = "Unknown";
+ break;
+ };
+ printk("SABRE%d: IOMMU TAG(%d)[error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
+ p->index, i, type_string,
+ ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
+ ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
+ ((tag & SABRE_IOMMUTAG_VPN) << PAGE_SHIFT));
+ printk("SABRE%d: IOMMU DATA(%d)[valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
+ p->index, i,
+ ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
+ ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
+ ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
+ ((data & SABRE_IOMMUDATA_PPN) << PAGE_SHIFT));
+ }
+ }
+ spin_unlock_irqrestore(&p->iommu.lock, flags);
+}
+
+static void sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs)
+{
+ struct pci_controller_info *p = dev_id;
+ unsigned long afsr_reg = p->controller_regs + SABRE_UE_AFSR;
+ unsigned long afar_reg = p->controller_regs + SABRE_UECE_AFAR;
+ unsigned long afsr, afar, error_bits;
+ int reported;
+
+ /* Latch uncorrectable error status. */
+ afar = sabre_read(afar_reg);
+ afsr = sabre_read(afsr_reg);
+
+ /* Clear the primary/secondary error status bits. */
+ error_bits = afsr &
+ (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
+ SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
+ SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
+ sabre_write(afsr_reg, error_bits);
+
+ /* Log the error. */
+ printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
+ p->index,
+ ((error_bits & SABRE_UEAFSR_PDRD) ?
+ "DMA Read" :
+ ((error_bits & SABRE_UEAFSR_PDWR) ?
+ "DMA Write" : "???")),
+ ((error_bits & SABRE_UEAFSR_PDTE) ?
+ ":Translation Error" : ""));
+ printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
+ p->index,
+ (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
+ (afsr & SABRE_UEAFSR_OFF) >> 29UL,
+ ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
+ printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
+ printk("SABRE%d: UE Secondary errors [", p->index);
+ reported = 0;
+ if (afsr & SABRE_UEAFSR_SDRD) {
+ reported++;
+ printk("(DMA Read)");
+ }
+ if (afsr & SABRE_UEAFSR_SDWR) {
+ reported++;
+ printk("(DMA Write)");
+ }
+ if (afsr & SABRE_UEAFSR_SDTE) {
+ reported++;
+ printk("(Translation Error)");
+ }
+ if (!reported)
+ printk("(none)");
+ printk("]\n");
+
+ /* Interrogate IOMMU for error status. */
+ sabre_check_iommu_error(p, afsr, afar);
+}
+
+static void sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs)
+{
+ struct pci_controller_info *p = dev_id;
+ unsigned long afsr_reg = p->controller_regs + SABRE_CE_AFSR;
+ unsigned long afar_reg = p->controller_regs + SABRE_UECE_AFAR;
+ unsigned long afsr, afar, error_bits;
+ int reported;
+
+ /* Latch error status. */
+ afar = sabre_read(afar_reg);
+ afsr = sabre_read(afsr_reg);
+
+ /* Clear primary/secondary error status bits. */
+ error_bits = afsr &
+ (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
+ SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
+ sabre_write(afsr_reg, error_bits);
+
+ /* Log the error. */
+ printk("SABRE%d: Correctable Error, primary error type[%s]\n",
+ p->index,
+ ((error_bits & SABRE_CEAFSR_PDRD) ?
+ "DMA Read" :
+ ((error_bits & SABRE_CEAFSR_PDWR) ?
+ "DMA Write" : "???")));
+ printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
+ "was_block(%d)\n",
+ p->index,
+ (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
+ (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
+ (afsr & SABRE_CEAFSR_OFF) >> 29UL,
+ ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
+ printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
+ printk("SABRE%d: CE Secondary errors [", p->index);
+ reported = 0;
+ if (afsr & SABRE_CEAFSR_SDRD) {
+ reported++;
+ printk("(DMA Read)");
+ }
+ if (afsr & SABRE_CEAFSR_SDWR) {
+ reported++;
+ printk("(DMA Write)");
+ }
+ if (!reported)
+ printk("(none)");
+ printk("]\n");
+}
+
+static void sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs)
+{
+ struct pci_controller_info *p = dev_id;
+ unsigned long afsr_reg, afar_reg;
+ unsigned long afsr, afar, error_bits;
+ int reported;
+
+ afsr_reg = p->controller_regs + SABRE_PIOAFSR;
+ afar_reg = p->controller_regs + SABRE_PIOAFAR;
+
+ /* Latch error status. */
+ afar = sabre_read(afar_reg);
+ afsr = sabre_read(afsr_reg);
+
+ /* Clear primary/secondary error status bits. */
+ error_bits = afsr &
+ (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
+ SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
+ SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
+ SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
+ sabre_write(afsr_reg, error_bits);
+
+ /* Log the error. */
+ printk("SABRE%d: PCI Error, primary error type[%s]\n",
+ p->index,
+ (((error_bits & SABRE_PIOAFSR_PMA) ?
+ "Master Abort" :
+ ((error_bits & SABRE_PIOAFSR_PTA) ?
+ "Target Abort" :
+ ((error_bits & SABRE_PIOAFSR_PRTRY) ?
+ "Excessive Retries" :
+ ((error_bits & SABRE_PIOAFSR_PPERR) ?
+ "Parity Error" : "???"))))));
+ printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
+ p->index,
+ (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
+ (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
+ printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
+ printk("SABRE%d: PCI Secondary errors [", p->index);
+ reported = 0;
+ if (afsr & SABRE_PIOAFSR_SMA) {
+ reported++;
+ printk("(Master Abort)");
+ }
+ if (afsr & SABRE_PIOAFSR_STA) {
+ reported++;
+ printk("(Target Abort)");
+ }
+ if (afsr & SABRE_PIOAFSR_SRTRY) {
+ reported++;
+ printk("(Excessive Retries)");
+ }
+ if (afsr & SABRE_PIOAFSR_SPERR) {
+ reported++;
+ printk("(Parity Error)");
+ }
+ if (!reported)
+ printk("(none)");
+ printk("]\n");
+
+ /* For the error types shown, scan both PCI buses for devices
+ * which have logged that error type.
+ */
+
+ /* If we see a Target Abort, this could be the result of an
+ * IOMMU translation error of some sort. It is extremely
+ * useful to log this information as usually it indicates
+ * a bug in the IOMMU support code or a PCI device driver.
+ */
+ if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
+ sabre_check_iommu_error(p, afsr, afar);
+ pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
+ pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
+ }
+ if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) {
+ pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
+ pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
+ }
+ /* For excessive retries, SABRE/PBM will abort the device
+ * and there is no way to specifically check for excessive
+ * retries in the config space status registers. So what
+ * we hope is that we'll catch it via the master/target
+ * abort events.
+ */
+
+ if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) {
+ pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
+ pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus);
+ }
+}
+
+/* XXX What about PowerFail/PowerManagement??? -DaveM */
+#define SABRE_UE_INO 0x2e
+#define SABRE_CE_INO 0x2f
+#define SABRE_PCIERR_INO 0x30
+static void __init sabre_register_error_handlers(struct pci_controller_info *p)
+{
+ unsigned long base = p->controller_regs;
+ unsigned long irq, portid = p->portid;
+ u64 tmp;
+
+ /* We clear the error bits in the appropriate AFSR before
+ * registering the handler so that we don't get spurious
+ * interrupts.
+ */
+ sabre_write(base + SABRE_UE_AFSR,
+ (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
+ SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
+ SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
+ irq = sabre_irq_build(p, NULL, (portid << 6) | SABRE_UE_INO);
+ if (request_irq(irq, sabre_ue_intr,
+ SA_SHIRQ, "SABRE UE", p) < 0) {
+ prom_printf("SABRE%d: Cannot register UE interrupt.\n",
+ p->index);
+ prom_halt();
+ }
+
+ sabre_write(base + SABRE_CE_AFSR,
+ (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
+ SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
+ irq = sabre_irq_build(p, NULL, (portid << 6) | SABRE_CE_INO);
+ if (request_irq(irq, sabre_ce_intr,
+ SA_SHIRQ, "SABRE CE", p) < 0) {
+ prom_printf("SABRE%d: Cannot register CE interrupt.\n",
+ p->index);
+ prom_halt();
+ }
+
+ irq = sabre_irq_build(p, NULL, (portid << 6) | SABRE_PCIERR_INO);
+ if (request_irq(irq, sabre_pcierr_intr,
+ SA_SHIRQ, "SABRE PCIERR", p) < 0) {
+ prom_printf("SABRE%d: Cannot register PciERR interrupt.\n",
+ p->index);
+ prom_halt();
+ }
+
+ tmp = sabre_read(base + SABRE_PCICTRL);
+ tmp |= SABRE_PCICTRL_ERREN;
+ sabre_write(base + SABRE_PCICTRL, tmp);
+}
+
+static void __init sabre_resource_adjust(struct pci_dev *pdev,
+ struct resource *res,
+ struct resource *root)
+{
+ struct pcidev_cookie *pcp = pdev->sysdata;
+ struct pci_controller_info *p = pcp->pbm->parent;
+ unsigned long base;
+
+ if (res->flags & IORESOURCE_IO)
+ base = p->controller_regs + SABRE_IOSPACE;
+ else
+ base = p->controller_regs + SABRE_MEMSPACE;
+
+ res->start += base;
+ res->end += base;
+}
+
+static void __init sabre_base_address_update(struct pci_dev *pdev, int resource)
+{
+ struct pcidev_cookie *pcp = pdev->sysdata;
+ struct pci_pbm_info *pbm = pcp->pbm;
+ struct pci_controller_info *p = pbm->parent;
+ struct resource *res = &pdev->resource[resource];
+ unsigned long base;
+ u32 reg;
+ int where, size;
+
+ if (res->flags & IORESOURCE_IO)
+ base = p->controller_regs + SABRE_IOSPACE;
+ else
+ base = p->controller_regs + SABRE_MEMSPACE;
+
+ where = PCI_BASE_ADDRESS_0 + (resource * 4);
+ size = res->end - res->start;
+ pci_read_config_dword(pdev, where, ®);
+ reg = ((reg & size) |
+ (((u32)(res->start - base)) & ~size));
+ pci_write_config_dword(pdev, where, reg);
+}
+
+static void __init apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
+{
+ struct pci_dev *pdev;
+ u32 dword;
+ u16 word;
+
+ for(pdev = pci_devices; pdev; pdev = pdev->next) {
+ if(pdev->vendor == PCI_VENDOR_ID_SUN &&
+ pdev->device == PCI_DEVICE_ID_SUN_SABRE) {
+ sabre_write_byte(pdev, PCI_LATENCY_TIMER, 64);
+ break;
+ }
+ }
+
+ for (pdev = sabre_bus->devices; pdev; pdev = pdev->sibling) {
+ if (pdev->vendor == PCI_VENDOR_ID_SUN &&
+ pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
+ sabre_read_word(pdev, PCI_COMMAND, &word);
+ word |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
+ PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
+ PCI_COMMAND_IO;
+ sabre_write_word(pdev, PCI_COMMAND, word);
+
+ /* Status register bits are "write 1 to clear". */
+ sabre_write_word(pdev, PCI_STATUS, 0xffff);
+ sabre_write_word(pdev, PCI_SEC_STATUS, 0xffff);
+
+ sabre_read_word(pdev, PCI_BRIDGE_CONTROL, &word);
+ word = PCI_BRIDGE_CTL_MASTER_ABORT |
+ PCI_BRIDGE_CTL_SERR |
+ PCI_BRIDGE_CTL_PARITY;
+ sabre_write_word(pdev, PCI_BRIDGE_CONTROL, word);
+
+ sabre_read_dword(pdev, APB_PCI_CONTROL_HIGH, &dword);
+ dword = APB_PCI_CTL_HIGH_SERR |
+ APB_PCI_CTL_HIGH_ARBITER_EN;
+ sabre_write_dword(pdev, APB_PCI_CONTROL_HIGH, dword);
+
+ /* Systems with SIMBA are usually workstations, so
+ * we configure to park to SIMBA not to the previous
+ * bus owner.
+ */
+ sabre_read_dword(pdev, APB_PCI_CONTROL_LOW, &dword);
+ dword = APB_PCI_CTL_LOW_ERRINT_EN | 0x0f;
+ sabre_write_dword(pdev, APB_PCI_CONTROL_LOW, dword);
+
+ /* Don't mess with the retry limit and PIO/DMA latency
+ * timer settings. But do set primary and secondary
+ * latency timers.
+ */
+ sabre_write_byte(pdev, PCI_LATENCY_TIMER, 64);
+ sabre_write_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
+ }
+ }
+}
+
+static void __init sabre_scan_bus(struct pci_controller_info *p)
+{
+ static int once = 0;
+ struct pci_bus *sabre_bus, *pbus;
+
+ /* Unlike for PSYCHO, we can only have one SABRE
+ * in a system. Having multiple SABREs is thus
+ * and error, and as a consequence we do not need
+ * to do any bus renumbering but we do have to have
+ * the pci_bus2pbm array setup properly.
+ *
+ * Also note that the SABRE host bridge is hardwired
+ * to live at bus 0.
+ */
+ if (once != 0) {
+ prom_printf("SABRE: Multiple controllers unsupported.\n");
+ prom_halt();
+ }
+ once++;
+
+ /* The pci_bus2pbm table has already been setup in sabre_init. */
+ sabre_bus = pci_scan_bus(p->pci_first_busno,
+ p->pci_ops,
+ &p->pbm_A);
+ apb_init(p, sabre_bus);
+
+ for (pbus = sabre_bus->children; pbus; pbus = pbus->next) {
+ struct pci_pbm_info *pbm;
+
+ if (pbus->number == p->pbm_A.pci_first_busno) {
+ pbm = &p->pbm_A;
+ } else if (pbus->number == p->pbm_B.pci_first_busno) {
+ pbm = &p->pbm_B;
+ } else
+ continue;
+
+ pbus->sysdata = pbm;
+ pbm->pci_bus = pbus;
+ pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node);
+ pci_record_assignments(pbm, pbus);
+ pci_assign_unassigned(pbm, pbus);
+ pci_fixup_irq(pbm, pbus);
+ }
+
+ sabre_register_error_handlers(p);
+}
+
+static void __init sabre_iommu_init(struct pci_controller_info *p, int tsbsize)
+{
+ struct linux_mlist_p1275 *mlist;
+ unsigned long tsbbase, i, n, order;
+ iopte_t *iopte;
+ u64 control;
+
+ /* Invalidate TLB Entries. */
+ control = sabre_read(p->controller_regs + SABRE_IOMMU_CONTROL);
+ control |= IOMMU_CTRL_DENAB;
+ sabre_write(p->controller_regs + SABRE_IOMMU_CONTROL, control);
+
+ for(i = 0; i < 16; i++)
+ sabre_write(p->controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
+
+ control &= ~(IOMMU_CTRL_DENAB);
+ sabre_write(p->controller_regs + SABRE_IOMMU_CONTROL, control);
+
+ for(order = 0;; order++)
+ if((PAGE_SIZE << order) >= ((tsbsize * 1024) * 8))
+ break;
+
+ tsbbase = __get_free_pages(GFP_DMA, order);
+ if (!tsbbase) {
+ prom_printf("SABRE_IOMMU: Error, gfp(tsb) failed.\n");
+ prom_halt();
+ }
+ iopte = (iopte_t *)tsbbase;
+
+ /* Initialize to "none" settings. */
+ for(i = 0; i < PCI_DVMA_HASHSZ; i++) {
+ pci_dvma_v2p_hash[i] = PCI_DVMA_HASH_NONE;
+ pci_dvma_p2v_hash[i] = PCI_DVMA_HASH_NONE;
+ }
+
+ n = 0;
+ mlist = *prom_meminfo()->p1275_totphys;
+ while (mlist) {
+ unsigned long paddr = mlist->start_adr;
+ unsigned long num_bytes = mlist->num_bytes;
+
+ if(paddr >= (((unsigned long) high_memory) - PAGE_OFFSET))
+ goto next;
+
+ if((paddr + num_bytes) >= (((unsigned long) high_memory) - PAGE_OFFSET))
+ num_bytes =
+ (((unsigned long) high_memory) -
+ PAGE_OFFSET) - paddr;
+
+ /* Align base and length so we map whole hash table sized chunks
+ * at a time (and therefore full 64K IOMMU pages).
+ */
+ paddr &= ~((1UL << 24UL) - 1);
+ num_bytes = (num_bytes + ((1UL << 24UL) - 1)) & ~((1UL << 24) - 1);
+
+ /* Move up the base for mappings already created. */
+ while(pci_dvma_v2p_hash[pci_dvma_ahashfn(paddr)] !=
+ PCI_DVMA_HASH_NONE) {
+ paddr += (1UL << 24UL);
+ num_bytes -= (1UL << 24UL);
+ if(num_bytes == 0UL)
+ goto next;
+ }
+
+ /* Move down the size for tail mappings already created. */
+ while(pci_dvma_v2p_hash[pci_dvma_ahashfn(paddr + num_bytes - (1UL << 24UL))] !=
+ PCI_DVMA_HASH_NONE) {
+ num_bytes -= (1UL << 24UL);
+ if(num_bytes == 0UL)
+ goto next;
+ }
+
+ /* Now map the rest. */
+ for (i = 0; i < ((num_bytes + ((1 << 16) - 1)) >> 16); i++) {
+ iopte_val(*iopte) = ((IOPTE_VALID | IOPTE_64K |
+ IOPTE_CACHE | IOPTE_WRITE) |
+ (paddr & IOPTE_PAGE));
+
+ if (!(n & 0xff))
+ set_dvma_hash(paddr, (n << 16));
+
+ if (++n > (tsbsize * 1024))
+ goto out;
+
+ paddr += (1 << 16);
+ iopte++;
+ }
+ next:
+ mlist = mlist->theres_more;
+ }
+out:
+ if (mlist) {
+ prom_printf("WARNING: not all physical memory mapped in IOMMU\n");
+ prom_printf("Try booting with mem=xxxM or similar\n");
+ prom_halt();
+ }
+
+ sabre_write(p->controller_regs + SABRE_IOMMU_TSBBASE, __pa(tsbbase));
+
+ control = sabre_read(p->controller_regs + SABRE_IOMMU_CONTROL);
+ control &= ~(IOMMU_CTRL_TSBSZ);
+ control |= (IOMMU_CTRL_TBWSZ | IOMMU_CTRL_ENAB);
+ switch(tsbsize) {
+ case 8:
+ pci_dvma_mask = 0x1fffffffUL;
+ control |= IOMMU_TSBSZ_8K;
+ break;
+ case 16:
+ pci_dvma_mask = 0x3fffffffUL;
+ control |= IOMMU_TSBSZ_16K;
+ break;
+ case 32:
+ pci_dvma_mask = 0x7fffffffUL;
+ control |= IOMMU_TSBSZ_32K;
+ break;
+ default:
+ prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
+ prom_halt();
+ break;
+ }
+ sabre_write(p->controller_regs + SABRE_IOMMU_CONTROL, control);
+}
+
+static void __init pbm_register_toplevel_resources(struct pci_controller_info *p,
+ struct pci_pbm_info *pbm)
+{
+ char *name = pbm->name;
+ unsigned long ibase = p->controller_regs + SABRE_IOSPACE;
+ unsigned long mbase = p->controller_regs + SABRE_MEMSPACE;
+ unsigned int devfn;
+ unsigned long first, last, i;
+ u8 *addr, map;
+
+ sprintf(name, "SABRE%d PBM%c",
+ p->index,
+ (pbm == &p->pbm_A ? 'A' : 'B'));
+ pbm->io_space.name = pbm->mem_space.name = name;
+
+ devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1);
+ addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP);
+ map = 0;
+ pci_config_read8(addr, &map);
+
+ first = 8;
+ last = 0;
+ for (i = 0; i < 8; i++) {
+ if ((map & (1 << i)) != 0) {
+ if (first > i)
+ first = i;
+ if (last < i)
+ last = i;
+ }
+ }
+ pbm->io_space.start = ibase + (first << 21UL);
+ pbm->io_space.end = ibase + (last << 21UL) + ((1 << 21UL) - 1);
+ pbm->io_space.flags = IORESOURCE_IO;
+
+ addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP);
+ map = 0;
+ pci_config_read8(addr, &map);
+
+ first = 8;
+ last = 0;
+ for (i = 0; i < 8; i++) {
+ if ((map & (1 << i)) != 0) {
+ if (first > i)
+ first = i;
+ if (last < i)
+ last = i;
+ }
+ }
+ pbm->mem_space.start = mbase + (first << 29UL);
+ pbm->mem_space.end = mbase + (last << 29UL) + ((1 << 29UL) - 1);
+ pbm->mem_space.flags = IORESOURCE_MEM;
+
+ if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
+ prom_printf("Cannot register PBM-%c's IO space.\n",
+ (pbm == &p->pbm_A ? 'A' : 'B'));
+ prom_halt();
+ }
+ if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
+ prom_printf("Cannot register PBM-%c's MEM space.\n",
+ (pbm == &p->pbm_A ? 'A' : 'B'));
+ prom_halt();
+ }
+}
+
+static void __init sabre_pbm_init(struct pci_controller_info *p, int sabre_node)
+{
+ char namebuf[128];
+ u32 busrange[2];
+ int node;
+
+ node = prom_getchild(sabre_node);
+ while ((node = prom_searchsiblings(node, "pci")) != 0) {
+ struct pci_pbm_info *pbm;
+ int err;
+
+ err = prom_getproperty(node, "model", namebuf, sizeof(namebuf));
+ if ((err <= 0) || strncmp(namebuf, "SUNW,simba", err))
+ goto next_pci;
+
+ err = prom_getproperty(node, "bus-range",
+ (char *)&busrange[0], sizeof(busrange));
+ if (err == 0 || err == -1) {
+ prom_printf("APB: Error, cannot get PCI bus-range.\n");
+ prom_halt();
+ }
+
+ if (busrange[0] == 1)
+ pbm = &p->pbm_B;
+ else
+ pbm = &p->pbm_A;
+ pbm->parent = p;
+ pbm->prom_node = node;
+ pbm->pci_first_busno = busrange[0];
+ pbm->pci_last_busno = busrange[1];
+ for (err = pbm->pci_first_busno;
+ err <= pbm->pci_last_busno;
+ err++)
+ pci_bus2pbm[err] = pbm;
+
+
+ prom_getstring(node, "name", pbm->prom_name, sizeof(pbm->prom_name));
+ err = prom_getproperty(node, "ranges",
+ (char *)pbm->pbm_ranges,
+ sizeof(pbm->pbm_ranges));
+ if (err != -1)
+ pbm->num_pbm_ranges =
+ (err / sizeof(struct linux_prom_pci_ranges));
+ else
+ pbm->num_pbm_ranges = 0;
+
+ err = prom_getproperty(node, "interrupt-map",
+ (char *)pbm->pbm_intmap,
+ sizeof(pbm->pbm_intmap));
+ if (err != -1) {
+ pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap));
+ err = prom_getproperty(node, "interrupt-map-mask",
+ (char *)&pbm->pbm_intmask,
+ sizeof(pbm->pbm_intmask));
+ if (err == -1) {
+ prom_printf("APB: Fatal error, no interrupt-map-mask.\n");
+ prom_halt();
+ }
+ } else {
+ pbm->num_pbm_intmap = 0;
+ memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask));
+ }
+
+ pbm_register_toplevel_resources(p, pbm);
+
+ next_pci:
+ node = prom_getsibling(node);
+ if (!node)
+ break;
+ }
+}
+
+void __init sabre_init(int pnode)
+{
+ struct linux_prom64_registers pr_regs[2];
+ struct pci_controller_info *p;
+ unsigned long flags;
+ int tsbsize, err;
+ u32 busrange[2];
+ u32 vdma[2];
+ u32 upa_portid;
+ int bus;
+
+ p = kmalloc(sizeof(*p), GFP_ATOMIC);
+ if (!p) {
+ prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
+ prom_halt();
+ }
+
+ upa_portid = prom_getintdefault(pnode, "upa-portid", 0xff);
+
+ memset(p, 0, sizeof(*p));
+
+ spin_lock_irqsave(&pci_controller_lock, flags);
+ p->next = pci_controller_root;
+ pci_controller_root = p;
+ spin_unlock_irqrestore(&pci_controller_lock, flags);
+
+ p->portid = upa_portid;
+ p->index = pci_num_controllers++;
+ p->scan_bus = sabre_scan_bus;
+ p->irq_build = sabre_irq_build;
+ p->base_address_update = sabre_base_address_update;
+ p->resource_adjust = sabre_resource_adjust;
+ p->pci_ops = &sabre_ops;
+
+ /*
+ * Map in SABRE register set and report the presence of this SABRE.
+ */
+ err = prom_getproperty(pnode, "reg",
+ (char *)&pr_regs[0], sizeof(pr_regs));
+ if(err == 0 || err == -1) {
+ prom_printf("SABRE: Error, cannot get U2P registers "
+ "from PROM.\n");
+ prom_halt();
+ }
+
+ /*
+ * First REG in property is base of entire SABRE register space.
+ */
+ p->controller_regs = pr_regs[0].phys_addr;
+ printk("PCI: Found SABRE, main regs at %016lx\n", p->controller_regs);
+
+ /* Error interrupts are enabled later after the bus scan. */
+ sabre_write(p->controller_regs + SABRE_PCICTRL,
+ (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
+ SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
+
+ /* Now map in PCI config space for entire SABRE. */
+ p->config_space = p->controller_regs + SABRE_CONFIGSPACE;
+ printk("SABRE: PCI config space at %016lx\n", p->config_space);
+
+ err = prom_getproperty(pnode, "virtual-dma",
+ (char *)&vdma[0], sizeof(vdma));
+ if(err == 0 || err == -1) {
+ prom_printf("SABRE: Error, cannot get virtual-dma property "
+ "from PROM.\n");
+ prom_halt();
+ }
+
+ switch(vdma[1]) {
+ case 0x20000000:
+ tsbsize = 8;
+ break;
+ case 0x40000000:
+ tsbsize = 16;
+ break;
+ case 0x80000000:
+ tsbsize = 32;
+ break;
+ default:
+ prom_printf("SABRE: strange virtual-dma size.\n");
+ prom_halt();
+ }
+
+ pci_dvma_offset = vdma[0];
+ sabre_iommu_init(p, tsbsize);
+
+ printk("SABRE: DVMA at %08x [%08x]\n", vdma[0], vdma[1]);
+
+ err = prom_getproperty(pnode, "bus-range",
+ (char *)&busrange[0], sizeof(busrange));
+ if(err == 0 || err == -1) {
+ prom_printf("SABRE: Error, cannot get PCI bus-range "
+ " from PROM.\n");
+ prom_halt();
+ }
+
+ p->pci_first_busno = busrange[0];
+ p->pci_last_busno = busrange[1];
+
+ /*
+ * Handle config space reads through any Simba on APB.
+ */
+ for (bus = p->pci_first_busno; bus <= p->pci_last_busno; bus++)
+ pci_bus2pbm[bus] = &p->pbm_A;
+
+ /*
+ * Look for APB underneath.
+ */
+ sabre_pbm_init(p, pnode);
+}
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)